
Page 1Find us at www.keysight.com

W H I T E P A P E R

How Internet Encryption Works and
Why It’s important

When you tell someone a secret, you trust them to keep it. If that person were to

tell someone your secret, they would lose your trust. However, what if someone

overheard you telling that person your secret without you even knowing?

Daily, we trust our computers and the internet to keep our personal information

safe. As more transactions become electronic, more sensitive information

traverses the internet and fills databases. That is why cyberattacks are so

prevalent. With valuable information at their fingertips, hackers can sell your

information on the dark web, leak classified documents, demand ransom for

information or photos, and track movements and activities. Hackers will use linked

payment accounts to shop, expose your intellectual property, and steal your

identity. Luckily, there is a way to prevent these nefarious activities.

Are you wondering about the lock symbol in your browser search bar? With the

advent of modern computers, the need to prevent data theft is critical. In 1975,

the U.S. published the first encryption standard to protect private data. A hacker

successfully cracked the code in 1997, generating the need for a new encryption

standard. The cryptographic protocol used then was Secure Sockets Layer (SSL).

It was superseded by Transport Layer Security (TLS) in 1999. There are several,

stark differences between the two protocols, but both aim to achieve the same

goal — secure data transport on the Internet. Although SSL is outdated and

Page 2Find us at www.keysight.com

insecure compared to TLS, it is still common to see SSL and TLS used interchangeably

when discussing internet encryption.

Fast forward to 2018 – the release of the most recent internet encryption standard.

The Transport Layer Security Standard version 1.3 evokes a new era of encryption that

makes the internet a safer place to exchange data. This white paper will discuss the

history of cryptography, how internet encryption works, the new requirements in TLS

1.3, passive versus active SSL, and how to successfully deploy a security infrastructure

that can handle and inspect encrypted traffic.

A Brief History of Cryptography
Cryptography is traceable back to the ancient Egyptians who carved non-standard

hieroglyphs into the walls of tombs. This is the first known example of random symbols

or numbers used to conceal the meaning of a message. Eighteen hundred years later,

Ancient Romans were the first on record to use a substitution cipher. Julius Caesar

reportedly used the Caesar cipher algorithm to encrypt messages for his military

generals should the enemy intercept their correspondence. The algorithm involves

shifting the letters of the original message a certain number of steps. That way the

message appears as a meaningless jumble of letters. The number of steps to shift, also

referred to as the key, is only known and agreed upon by the sender and receiver of

the message. Figure 1 depicts this technique and how it encrypts the message “glory,”

using a key of 4.

As clever as this substitution cipher is, it isn’t hacker-proof. Simply shifting the alphabet

a maximum of 26 times will eventually reveal the hidden message. It could easily take

under an hour to solve. Although this method of encryption is not the most secure, it is

the basis for the way we encrypt our internet today.

Figure 1. Caesar cipher substitution cipher example

A AAB C D E F G

G

H I J K L

L

M N O

O

P Q R

R

S T U V W X Y

Y

Z

W X Y Z A B C

C

D E F G H

H

I J K

K

L M N

N

O P Q R S T U

U

V

Original
Alphabet

Shifted
Alphabet

Key = +4, Encrypted message “GLORY” = “CHKNU”

Page 3Find us at www.keysight.com

Encryption Keys Today
Today, encryption keys are a little harder to crack than the previous Caesar cipher

example. They are composed of a string of ones and zeroes that usually range

anywhere from 128 to 4,096 bits. Encryption keys have an astronomical number of key

combination possibilities. For example, a 256-bit key made of ones and zeroes will have

2256 or 1.2 x 1077 key possibilities.

Let’s put this into perspective:

As of 2018, the fastest supercomputer on Earth, the IBM Summit, performs 2 x 1017

calculations per second.1 That means it takes the Summit approximately 1.9 x 1052

years to run through every possible key combination. Our universe is only 1.38 x 1010

years old.2 An encrypted message is sent and read in a matter of seconds. So, even

cracking the key in a fourth of that time would reveal a very, very old message.

Computer technology and capabilities are growing exponentially, and soon, 256-bit

keys will not be strong enough. The National Institute of Standards and Technology

predicts that 2,048-bit keys will be decipherable by the year 2030 and recommends

using 3,072-bit keys for encryption after 2030.3 Luckily, our method of encrypting the

internet involves deriving more than one key and makes hacking an encrypted session

that much harder.

1 John Diente, “US Has World’s Fastest Supercomputer Again: IBM’S Summit Can Do 200
Quadril l ion Calculations Per Second,” Tech Times, June 9, 2018, https://www.techtimes.com/
articles/229816/20180609/us-has-worlds-fastest-supercomputer-again-ibms-summit-can-do-200-
quadril l ion-calculations-per-second.htm

2 Nola Taylor Redd, “How Old is the Universe?” Space.com, June 8, 2017, https://www.space.
com/24054-how-old-is-the-universe.html

3 Elaine Barker, Department of Commerce, National Institute of Standards and Technology,
Recommendation for Key Management Part 1: General, Special Publication 800-57 Part 1 Revision
4, January 2016, pg. 53-58, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r4.pdf

Figure 2. A visual representation of the age of our universe versus the time it takes the world’s
fastest supercomputer to compute every possible key combination for a 256-bit key

Age of our universe

Amount of time Summit needs to calculate every key combination

https://www.techtimes.com/articles/229816/20180609/us-has-worlds-fastest-supercomputer-again-ibms-summit-can-do-200-quadrillion-calculations-per-second.htm
https://www.techtimes.com/articles/229816/20180609/us-has-worlds-fastest-supercomputer-again-ibms-summit-can-do-200-quadrillion-calculations-per-second.htm
https://www.techtimes.com/articles/229816/20180609/us-has-worlds-fastest-supercomputer-again-ibms-summit-can-do-200-quadrillion-calculations-per-second.htm
https://www.space.com/24054-how-old-is-the-universe.html
https://www.space.com/24054-how-old-is-the-universe.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

Page 4Find us at www.keysight.com

Symmetric and Asymmetric Keys
When both the sender and receiver agree ahead of time on a key for a message, as

in Caesar’s cipher, it is called symmetric encryption. Unfortunately, using this type of

premeditated key makes it impossible to communicate between sender and receiver in

today’s open internet, unless the two parties meet in person. Asymmetric encryption

resolves this issue.

Asymmetric encryption involves two keys — one for encryption (public) and one for

decryption (private). The public key is open to the public which anyone can use to

encrypt a message. The private key is for decryption and is only used by those who

know it. Asymmetric encryption allows messages to move back and forth in a session

without having to agree on a private key. Sounds odd, doesn’t it?

Finger painting easily explains the process. The logic behind asymmetric encryption is based

on a one-way function — a function that is easy to solve in one direction but hard to solve

in the reverse direction. Take mixing colors, for example. It is easy to mix light blue and dark

red to make purple but hard to unmix purple into the exact original two colors.

Here is an example:

Let’s say Alice and Bob want to share a secret color that they don’t want anyone else to

see. First, they each agree to a starting color that anyone can publicly see, say yellow.

Second, Alice and Bob randomly select each of their own private colors to mix with

yellow. Alice chooses red, and Bob wants blue. Alice’s mixture turns orange, and Bob’s

turns green. Both mixtures disguise each of their private colors. Third, Alice sends her

orange mixture to Bob, and Bob sends his green mixture to Alice. Someone from the

outside looking at this exchange sees the colors yellow, green, and orange, but they

cannot see the private colors.

Finally, the magical step of the exchange: both Alice and Bob add their private colors

to the mixture they received. Alice adds red to the green mixture, and Bob adds blue to

the orange mixture. The final mixtures reveal the same brown-hued color for both Alice

and Bob, their shared secret color. That person watching from the outside cannot see

the shared secret color because they do not know what colors Alice and Bob added in

private. Figure 3 depicts this ingenious exchange.

Page 5Find us at www.keysight.com

Figure 3. Illustration of the secret color exchange between Alice and Bob

+

=

+

=

+

=

+

=

Alice Bob

Public Color

Private Color

Private Color

Shared Secret
Color

Exchange
of colors

The mixed color exchange also provides a way to authenticate the two participating

parties. Let’s say that after this initial exchange between Alice and Bob, an outsider

poses as Bob and sends a green-colored mix to Alice. When Alice adds her private

color to the mixture, she does not get the same shared secret color she got before

(brown). Because of this, Alice knows this green mixture came from an imposter

attempting to hijack the session. So, Alice terminates the communication session.

Now, let’s tie this into encryption keys. Asymmetric keys have two parts — an exponent

and a modulus, written as “(exponent, modulus)”. So, two keys contain four parts in

total. Two main algorithms that take advantage of the one-way function logic generate

these keys. They are known as the Rivest, Shamir, and Adelman (RSA) algorithm and the

Diffie-Hellman (DH) algorithm. Both use modular arithmetic for key generation but deploy

the keys differently for encryption. If you are not familiar with modular arithmetic, Khan

Academy has a great overview video. First, we will discuss the RSA method, then DH.

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

Page 6Find us at www.keysight.com

=
1

()

=
1
7

40

 Multiply each side by 7 40

7 40 = 1

Assume 7 =

∗ 40 = 1

= 161

161 = 7

= 23

RSA Key Generation
Before TLS 1.3, the RSA algorithm was the widely accepted method for key generation.

With RSA, public and private keys generate only once at the initial connection

attempt between a sender and a receiver. Then each party stores the keys for later

communication. These are known as static keys. In most cases, the sender is a client

trying to access a web page, and the receiver is the server that hosts the web page.

Both the client and server have one public and one private key each. So, in total, there

are four different keys composed of eight parts. Let’s walk through the calculations for

RSA key generation.

Server public key modulus formation. Deriving the modulus (m) for the public key

involves large, prime numbers picked randomly. For the sake of simplicity in this paper,

we will pick small prime numbers, 5 and 11. These numbers equal the modulus 55 when

multiplied together. The modulus is the same for the private key. Note that the product

of two prime integers is not prime. Therefore, the modulus in RSA key generation is

never prime.

Server public key exponent formation. To calculate the public key exponent (e),

subtract one from each of the numbers chosen before and multiply those together.

F(n) = (5 – 1) × (11-1) = 40

Now, choose a number that is relatively prime to and smaller than 40. Relatively

prime means that the number cannot be divided evenly into 40; like 7. The public key

exponent is 7.

The server public key (e,m) is (7, 55)

Server private key exponent formation. Calculate the private key exponent (x) by

using the following equation:

Page 7Find us at www.keysight.com

Since the modulus is the same as the public key, the private server key (x,m) is (23, 55).

In this example, we will only solve for the public and private keys of the server. When

the client wants to connect to the server’s web page, it first sends the server a message

encrypted with the server’s public key. This initial message is plaintext since it is not

encrypted yet. Once the server decrypts the message, it’s known as cleartext, since the

message was transmitted, unencrypted, and stored.

Let’s say the client wants to send the message “2” to the server. It would use the

following equation:

encrypted message = (plaintext message)e mod m

encrypted message = 27 mod 55

encrypted message = 128 mod 55

encrypted message = 18

Now the server decrypts that message using its private key:

cleartext message = (encrypted message)x mod m

cleartext message = (18)23 mod 55

cleartext message = 74347713614021927913318776832 mod 55 = 2

The message was sent and received all without sharing private keys. However,

what is stopping someone from calculating those steps backward? The strength of

the cryptography lies in the product of the two large prime numbers chosen for the

modulus at the start. Like the one-way function color example, these numbers are easily

multiplied together to get a product. Someone intercepting the message and looking

only at the product would have a hard time figuring out the initial numbers.

You can store RSA encryption keys after their initial inception for use in later

communications. Because of this, the RSA encryption method is easy to implement,

but its strength is limited. Should someone with bad intentions get ahold of the server’s

private key, they would be able to decrypt any message ever exchanged between the

same parties — from the past or in the future. This flaw in RSA key generation is a

significant weakness and prompted a new internet standard. Enter TLS 1.3 and DH.

Page 8Find us at www.keysight.com

Keep in mind that keys
these days come in huge
bit sizes so cracking keys
using both RSA and DH
is challenging.

DH Key Generation & Ephemeral Keys
DH key exchanges are very similar to RSA key exchanges in that they both use modular

arithmetic. However, the strength of RSA relies on the modulus computation using the

product of two large, prime integers. For DH, on the other hand, the strength lies in its

use of discrete logarithms. Let’s walk through the math to understand better.

First, the server and client agree publicly on a generator, g, and a prime modulus, m.

Note that this modulus is prime, unlike RSA. Let’s choose 3 and 23, or 3 mod 23.

Second, the server determines a random private number, let’s say 7 and computes:

37 mod 23 = 2

The server then sends this result publicly to the client. Third, the client selects a private

number and does the same calculation. Let’s say the client chooses 9.

39 mod 23 = 18

The client sends this result to the server. Someone looking in on this communication

session only sees the numbers 2, 18, and 3 mod 23. They cannot see the random

private numbers. Lastly, the server and the client each take the number sent to them

and raise it to their own private numbers, resulting in the same shared secret number.

Server: 187 mod 23 = 6

Client: 29 mod 23 = 6

Thus, a messaged is communicated without ever sharing a private key. It may not look

like it right away, but both the server and the client did the same calculation with the

exponents in a different order. This does not change the final result.

Server: (39)7 mod 23 = 6

Client: (37)9 mod 23 = 6

Someone looking in on this communication cannot discover the secret key without one

of the private keys. The strength of this algorithm depends on the quantity of other

viable options that can also satisfy the modular arithmetic. This is the discrete logarithm

problem. For example, take 37 mod 23 = 2. The person snooping in on this conversation

can only see 3 mod 23 and 2 since 7 is a private key. Several different numbers could

satisfy 3x mod 23 = 2 like 18, 29, 40, 51 —and the list goes on. This makes computing

the exponent and cracking the key challenging for a hacker.

Page 9Find us at www.keysight.com

Originally, these keys were stored for later use, like RSA, which posed as a vulnerability

should a hacker obtain a key. This prompted the creation of Diffie-Hellman Ephemeral

(DHE). In DHE, each communication session generates new keys; unlike static keys. This

type of key is called ephemeral and is a distinct characteristic of the DHE key exchange.

Previous and future communications remain secure even if one session was hacked.

TLS 1.3 and Its Requirements
Published in August of 2018, TLS 1.3 addresses the weaknesses RSA key generation

brings to internet encryption. One of the main requirements of TLS 1.3 is the mandated

use of the DHE key exchange. The new standard no longer supports the RSA method.

The goal of this is to protect past and future sessions by deploying perfect forward

secrecy in the form of ephemeral keys.

Although the RSA algorithm can be used to create ephemeral keys, it requires more

processing power than DHE. Since RSA key generation necessitates two large prime

numbers, generating ephemeral keys using RSA is expensive in terms of processing

power. Therefore, RSA is not ideal for use in perfect forward secrecy.

Also, RSA is not as secure as DHE simply due to the number of possible keys discrete

logarithms can generate. In simple terms, the number matrix of viable keys in RSA is

smaller than that in DHE. That means there are less numbers a hacker must sift through

to crack an RSA key. If you compare an RSA key and a DHE key of the same size, DHE

is more robust.

In addition to requiring DHE for key exchange, TLS 1.3 also offers some performance

improvements. In this version of the standard, only one round trip is necessary to

complete the initial handshake. Previously, TLS 1.2 required two round trips, which

means 1.3 cuts encryption latency in half.

Lastly, TLS 1.3 remembers sites you have visited before and allows you to send

encrypted data on the first message to the server. This is known as “zero round trip,”

or 0-RTT, and improves load times. Load times directly affect bounce rates of your site

visitors. Google found that 53% of mobile site visitors leave a page that takes longer

than three seconds to load.4 So, by implementing TLS 1.3 standards, you have the

opportunity to reduce bounce rates and convert visitors into purchasers.

4 “Find out how you stack up to new industry benchmarks for mobile page speed,” Think
with Google, February 2018, https://www.thinkwithgoogle.com/marketing-resources/data-
measurement/mobile-page-speed-new-industry-benchmarks/

https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-speed-new-industry-benchmarks/

Page 10Find us at www.keysight.com

DLPIDS

Decryption Network Packet Broker
(NPB)

Sender Firewall Network Switch Network Tap Recipient

Decrypted Traffic
Encrypted Traffic

Forensic Tool

Figure 4. Passive SSL decryption scenario using a network packet broker

A Security Infrastructure Built For Encryption
While encrypting traffic is important, decrypting traffic is equally as important. Today,

encryption-cloaked cyberattacks are common, and they are becoming more prevalent

with each passing day. The number of encrypted attacks increased by 27% from 2017

to 2018.5 Methods of exposure to encrypted attacks include visiting phishing pages or

compromised sites, visiting healthy pages with malvertising from infected ad servers,

and receiving data containing encrypted malware. There are cases where attackers use

SSL/TLS-based connections for command and control activities once an end-user is

compromised. Because of this, enterprises need to decrypt the traffic coming into their

network and investigate it for potential threats. Otherwise, they may be giving a free

pass to encryption-cloaked malware, viruses, and more.

With the rising number of encrypted attacks and the requirement of ephemeral keys in

TLS 1.3, there are new challenges for network monitoring. Previously, IT personnel could

passively decrypt traffic by duplicating it, sending it to the decryption device, decrypting

it, and forwarding it onto security and monitoring tools for analysis. This method is

known as passive SSL decryption.

As shown in Figure 4 below, passive decryption in an out-of-band architecture is for

inbound-only traffic monitoring scenarios and not does allow for the encryption/re-

encryption of outbound communications.

5 “2019 Sonicwall Cyber Threat Report,” Sonicwall, 2019, https://www.sonicwall.com/lp/2019-
cyber-threat-report-lp/, pg. 31.

https://www.sonicwall.com/lp/2019-cyber-threat-report-lp/
https://www.sonicwall.com/lp/2019-cyber-threat-report-lp/

Page 11Find us at www.keysight.com

TLS 1.3 mandates the use of ephemeral keys, thus obsoleting the use of static keys

and passive SSL. To use ephemeral keys, decryption must occur inline in the form of

a transparent proxy. This decryption process, also called active SSL, is a known and

trusted part of the network. It performs inline decryption for the end user recipients in a

transparent fashion.

When using this scenario, decryption/encryption is supported in both directions (for

inbound and outbound network traffic), as depicted in Figure 5. Once the cleartext

analysis for security threats is complete, the good data is re-encrypted and sent to its

destination within the network.

Keysight’s network packet brokers (NPBs) bring several security benefits to your

network infrastructure, including visibility into encrypted data on the network and active

SSL capabilities. They offer an integrated solution that is simpler and easier to use than

decryption alternatives.

Keysight NPBs can:

• Decrypt and re-encrypt without degrading the performance of other functions such
as traffic aggregation, filtering, grooming, replication, deduplication, and more

• Act as a central connection point between dozens of security tools and the traffic
needed for inspection

• Load balance security and monitoring tools based on capacity

• Isolate and mask sensitive cleartext data — like email addresses, phone numbers,
and health information — for privacy reasons

• Deliver a highly-resilient, fail-open system

Other toolIPS

EncryptionDecryption Network Packet Broker
(NPB)

Sender Firewall Bypass Switch Network Switch Recipient

Decrypted Traffic
Encrypted Traffic

Figure 5. Active SSL decryption scenario using a network packet broker

This information is subject to change without notice. © Keysight Technologies, 2019 - 2021, Published in USA, December 16, 2021, 3119-1149.EN

Page 12Find us at www.keysight.com

Learn more at: www.keysight.com

For more information on Keysight Technologies’ products, applications or services,

please contact your local Keysight office. The complete list is available at:

www.keysight.com/find/contactus

Figure 6. Keysight’s Vision X network packet broker built for inline and out-of-band
monitoring architectures

The combination of these attributes allows Keysight NPBs to deliver a broad set of

value-added features at a cost-effective price point.

Summary
A hacker will do anything to obtain and exploit your data and sensitive information. To

combat their clever tactics and reduce vulnerability, organizations should deploy an

active SSL decryption and encryption solution, like an NPB. Moreover, a solution that

meets the latest standard requirements in TLS 1.3 —ephemeral key exchanges using

DHE — is considered the most secure.

https://www.ixiacom.com/products/network-packet-brokers

